Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 266(Pt 2): 131405, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582487

RESUMO

Drug binding and interactions with plasma proteins play a crucial role in determining the efficacy of drug delivery, thus significantly impacting the overall pharmacological effect. AGP, the second most abundant plasma protein in blood circulation, has the unique capability to bind drugs and transport various compounds. In our present study, for the first time, we investigated whether AGP, a major component of the acute phase lipocalin in human plasma, can bind with pentamidine derivatives known for their high activity against the fungal pathogen Pneumocystis carinii. This investigation was conducted using integrated spectroscopic techniques and computer-based approaches. According to the results, it was concluded that compounds having heteroatoms (-NCH3) in the aliphatic linker and the addition of a Br atom and a methoxy substituent at the C-2 and C-6 positions on the benzene ring, exhibit strong interactions with the AGP binding site. These compounds are identified as potential candidates for recognition by this protein. MD studies indicated that the tested analogues complexed with AGPs reach an equilibrium state after 60 ns, suggesting the stability of the complexes. This observation was further corroborated by experimental results. Therefore, exploring the interaction mechanism of pentamidine derivatives with plasma proteins holds promise for the development of bis-benzamidine-designed pharmaceutically important drugs.


Assuntos
Orosomucoide , Pentamidina , Ligação Proteica , Humanos , Pentamidina/química , Pentamidina/farmacologia , Pentamidina/metabolismo , Orosomucoide/metabolismo , Orosomucoide/química , Sítios de Ligação , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular
2.
Dalton Trans ; 53(12): 5567-5579, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38426897

RESUMO

In this contribution we report the synthesis, characterization and in vitro anticancer activity of novel cyclometalated 4-phenylthiazole-derived ruthenium(II) (2a-e) and osmium(II) (3a-e) complexes. Formation and sufficient purity of the complexes were unambigiously confirmed by 1H-, 13C- and 2D-NMR techniques, X-ray diffractometry, HRMS and elemental analysis. The binding preferences of these cyclometalates to selected amino acids and to DNA models including G-quadruplex structures were analyzed. Additionally, their stability and behaviour in aqueous solutions was determined by UV-Vis spectroscopy. Their cellular accumulation, their ability of inducing apoptosis, as well as their interference in the cell cycle were studied in SW480 colon cancer cells. The anticancer potencies were investigated in three human cancer cell lines and revealed IC50 values in the low micromolar range, in contrast to the biologically inactive ligands.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Humanos , Estrutura Molecular , Modelos Moleculares , Linhagem Celular Tumoral , Antineoplásicos/química , Ciclo Celular , Rutênio/farmacologia , Rutênio/química , Complexos de Coordenação/química
3.
Eur J Pharm Sci ; 192: 106651, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38013124

RESUMO

Binding towards human serum albumin (HSA) and α1-acid glycoprotein (AGP) of three approved fibroblast growth factor receptor (FGFR) inhibitors ponatinib (PON), nintedanib (NIN) and erdafitinib (ERD), as well as the experimental drug KP2692 was studied by means of spectrofluorometric and UV-visible spectrophotometric methods. Additionally, proton dissociation processes, lipophilicity, and fluorescence properties of these four molecules were investigated in detail. The FGFR inhibitors were predominantly presented in their single protonated form (HL+) at pH 7.4 (at blood pH). At gastric pH (pH 1-2) the protonated forms (+1 - +3) are present, which provide relatively good aqueous solubility of the drugs. All of the four inhibitors are highly or extremely lipophilic at pH 7.4 (logD7.4 ≥ 2.7). At acidic pH 2.0 PON and ERD are rather lipophilic, NIN is amphiphilic, while KP2692 is highly hydrophilic. All four compounds bind to HSA and AGP. Moderate binding of PON, KP2692 and NIN was found towards albumin (logK' = 4.5-4.7), while their affinity for AGP was about one order of magnitude higher (logK' = 5.2-5.7). ERD shows a larger affinity for both proteins (logK'HSA ≈ 5.2, logK'AGP ≈ 7.0). The computed constants were used to model the distribution of the FGFR inhibitors in blood plasma under physiological and pathological (acute phase) conditions. The changing levels of the two proteins under pathological conditions compensate each other for PON and NIN, so that the free drug fractions do not change considerably. In the case of ERD the higher AGP levels distinctly reduce the free available fraction of the drug. Comparison with clinical pharmacokinetic data indicates that the here presented solution distribution studies can very well predict the conditions in cancer patients.


Assuntos
Imidazóis , Albumina Sérica Humana , Humanos , Cloridrato de Erlotinib/farmacologia , Distribuição Tecidual , Imidazóis/farmacologia , Ligação Proteica
4.
Inorg Chem ; 62(38): 15510-15526, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37708255

RESUMO

Maleimide-containing prodrugs can quickly and selectively react with circulating serum albumin following their injection in the bloodstream. The drug-albumin complex then benefits from longer blood circulation times and better tumor accumulation. Herein, we have applied this strategy to a previously reported highly phototoxic Ru polypyridyl complex-based photosensitizer to increase its accumulation at the tumor, reduce off-target cytotoxicity, and therefore improve its pharmacological profile. Specifically, two complexes were synthesized bearing a maleimide group: one complex with the maleimide directly incorporated into the bipyridyl ligand, and the other has a hydrophilic linker between the ligand and the maleimide group. Their interaction with albumin was studied in-depth, revealing their ability to efficiently bind both covalently and noncovalently to the plasma protein. A crucial finding is that the maleimide-functionalized complexes exhibited significantly lower cytotoxicity in noncancerous cells under dark conditions compared to the nonfunctionalized complex, which is a highly desirable property for a photosensitizer. The binding to albumin also led to a decrease in the phototoxicity of the Ru bioconjugates in comparison to the nonfunctionalized complex, probably due to a decreased cellular uptake. Unfortunately, this decrease in phototoxicity was not compensated by a dramatic increase in tumor accumulation, as was demonstrated in a tumor-bearing mouse model using inductively coupled plasma mass spectrometry (ICP-MS) studies. Consequently, this study provides valuable insight into the future design of in situ albumin-binding complexes for photodynamic therapy in order to maximize their effectiveness and realize their full potential.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Fotoquimioterapia , Rutênio , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Rutênio/farmacologia , Rutênio/química , Ligantes , Albumina Sérica , Maleimidas/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Antineoplásicos/química
5.
Dalton Trans ; 52(29): 9964-9982, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37431840

RESUMO

A series of four indolo[2,3-e]benzazocines HL1-HL4 and two indolo[2,3-f]benzazonines HL5 and HL6, as well as their respective copper(II) complexes 1-6, were synthesized and characterized by 1H and 13C NMR spectroscopy, ESI mass spectrometry, single crystal X-ray diffraction (SC-XRD) and combustion analysis (C, H, N). SC-XRD studies of precursors Vd, VIa·0.5MeOH, of ligands HL4 and HL6·DCM, and complexes 2·2DMF, 5·2DMF, 5'·iPrOH·MeOH provided insights into the energetically favored conformations of eight- and nine-membered heterocycles in the four-ring systems. In addition, proton dissociation constants (pKa) of HL1, HL2 and HL5, complexes 1, 2 and 5, overall stability constants (log ß) of 1, 2 and 5 in 30% (v/v) DMSO/H2O at 298 K, as well as thermodynamic solubility of HL1-HL6 and 1-6 in aqueous solution at pH 7.4 were determined by UV-vis spectroscopy. All compounds were tested for antiproliferative activity against Colo320, Colo205 and MCF-7 cell lines and showed IC50 values in the low micromolar to sub-micromolar concentration range, while some of them (HL1, HL5 and HL6, 1, 2 and 6) showed remarkable selectivity towards malignant cell lines. Ethidium bromide displacement studies provided evidence that DNA is not the primary target for these drugs. Rather, inhibition of tubulin assembly is likely the underlying mechanism responsible for their antiproliferative activity. Tubulin disassembly experiments showed that HL1 and 1 are effective microtubule destabilizing agents binding to the colchicine site. This was also confirmed by molecular modelling investigations. To the best of our knowledge, complex 1 is the first reported transition metal complex to effectively bind to the tubulin-colchicine pocket.


Assuntos
Antineoplásicos , Complexos de Coordenação , Compostos Heterocíclicos , Cobre/química , Tubulina (Proteína) , Modelos Moleculares , Complexos de Coordenação/química , Espectroscopia de Ressonância Magnética , Microtúbulos , Antineoplásicos/química , Cristalografia por Raios X , Ligantes
6.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769193

RESUMO

There are a number of uncertainties regarding plasma protein binding and blood distribution of the active drugs favipiravir (FAVI), molnupiravir (MOLNU) and imatinib (IMA), which were recently proposed as therapeutics for the treatment of COVID-19 disease. Therefore, proton dissociation processes, solubility, lipophilicity, and serum protein binding of these three substances were investigated in detail. The drugs display various degrees of lipophilicity at gastric (pH 2.0) and blood pH (pH 7.4). The determined pKa values explain well the changes in lipophilic character of the respective compounds. The serum protein binding was studied by membrane ultrafiltration, frontal analysis capillary electrophoresis, steady-state fluorometry, and fluorescence anisotropy techniques. The studies revealed that the ester bond in MOLNU is hydrolyzed by protein constituents of blood serum. Molnupiravir and its hydrolyzed form do not bind considerably to blood proteins. Likewise, FAVI does not bind to human serum albumin (HSA) and α1-acid glycoprotein (AGP) and shows relatively weak binding to the protein fraction of whole blood serum. Imatinib binds to AGP with high affinity (logK' = 5.8-6.0), while its binding to HSA is much weaker (logK' ≤ 4.0). The computed constants were used to model the distribution of IMA in blood plasma under physiological and 'acute-phase' conditions as well.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Ligação Proteica , Mesilato de Imatinib/farmacologia , SARS-CoV-2/metabolismo , Proteínas Sanguíneas/metabolismo , Orosomucoide/metabolismo , Albumina Sérica Humana/metabolismo , Plasma/metabolismo
7.
J Inorg Biochem ; 238: 112058, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375357

RESUMO

With the aim to incorporate pharmacophore motifs into the Ru(II)-polypyridyl framework, compounds [Ru(II)(1,10-phenantroline)2(2-(2-pyridyl)benzo[b]thiophene)](CF3SO3)2 (1) and [Ru(II)(1,10-phenantroline)2(2-(2-pyridyl)benzimidazole)](CF3SO3)2 (2) were prepared, characterized and tested for their antitumor potential. The solid-state structure of the compounds was confirmed by single-crystal X-ray diffraction analysis. The solution behavior of both complexes was investigated, namely their solubility, stability, and lipophilicity in physiological mimetic conditions, as well as an eventual uptake by passive diffusion. In vitro anticancer activity of the complexes on ovarian and different colon cancer cells and apoptosis induction by the complexes were studied. A slow transformation process was observed for complex 1 in aqueous solution when exposed to sunlight, while complex 2 undergoes deprotonation (pKa = 7.59). The lipophilicity of this latter complex depends strongly on the pH and ionic strength. In contrast, 1 is rather hydrophilic under various conditions. Complex 1 was highly cytotoxic on Colo-205 human colon (IC50 = 7.87 µM) and A2780 ovarian (IC50 = 2.2 µM) adenocarcinoma cell lines, while 2 displayed moderate anticancer activity (30.9 µM and 18.0 µM, respectively). The complexes induced late apoptosis and necrosis. Only a weak binding of the complexes to human serum albumin, the main transport protein in blood serum, was found. However, a more significant binding to calf thymus DNA was observed in UV-visible titrations and fluorometric dye displacement studies. Detailed analysis of fluorescence lifetime data collected for the latter systems reveals not only the partial intercalation of the complexes, but goes beyond the usual simplified interpretations.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias Ovarianas , Rutênio , Humanos , Feminino , Rutênio/química , Linhagem Celular Tumoral , Tiofenos , Antineoplásicos/química , Benzimidazóis/farmacologia , Complexos de Coordenação/química
8.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077173

RESUMO

A new synthesis method is described for the first time to produce silver nanoclusters (AgNCs) by using the tyrosine (Tyr) amino acid. Several important parameters (e.g., molar ratios, initial pH, reaction time etc.) were optimized to reach the highest yield. The formed Tyr-AgNCs show characteristic blue emission at λem = 410 nm, and two dominant fluorescence lifetime components were deconvoluted (τ1 ~ 3.7 and τ2 ~ 4.9 ns). The NCs contained metallic cores stabilized by dityrosine. For possible application, the interactions with several metal ions from the tap water and wastewater were investigated. Among the studied cations, four different ions (Cu2+, Ni2+, Fe3+, and Rh3+) had a dominant effect on the fluorescence of NCs. Based on the detected quenching processes, the limit of detection of the metal ions was determined. Static quenching (formation of a non-luminescent complex) was observed in all cases by temperature-dependent measurements. The calculated thermodynamic parameters showed that the interactions are spontaneous ranked in the following order of strength: Cu2+ > Fe3+ > Rh3+ > Ni2+. Based on the sign and relations of the standard enthalpy (ΔH°) and entropy changes (ΔS°), the dominant forces were also identified.


Assuntos
Nanopartículas Metálicas , Cátions , Cobre/química , Fluorescência , Íons , Nanopartículas Metálicas/química , Prata/química , Espectrometria de Fluorescência/métodos , Tirosina
9.
Molecules ; 27(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408443

RESUMO

The proton dissociation processes of two tridentate salicylidene aminoguanidine Schiff bases (SISC, Pro-SISC-Me), the solution stability and electrochemical properties of their Cu(II), Fe(II) and Fe(III) complexes were characterized using pH-potentiometry, cyclic voltammetry and UV-visible, 1H NMR and electron paramagnetic resonance spectroscopic methods. The structure of the proline derivative (Pro-SISC-Me) was determined by X-ray crystallography. The conjugation of L-proline to the simplest salicylidene aminoguanidine Schiff base (SISC) increased the water solubility due to its zwitterionic structure in a wide pH range. The formation of mono complexes with both ligands was found in the case of Cu(II) and Fe(II), while bis complexes were also formed with Fe(III). In the complexes these tridentate ligands coordinate via the phenolato O, azomethine N and the amidine N, except the complex [Fe(III)L2]+ of Pro-SISC-Me in which the (O,N) donor atoms of the proline moiety are coordinated beside the phenolato O, confirmed by single crystal X-ray crystallographic analysis. This binding mode yielded a stronger Fe(III) preference for Pro-SISC-Me over Fe(II) in comparison to SISC. This finding is also reflected in the lower redox potential value of the iron-Pro-SISC-Me complexes. The ligands alone were not cytotoxic against human colon cancer cell lines, while complexation of SISC with Cu(II) resulted in moderate activity, unlike the case of its more hydrophilic counterpart.


Assuntos
Complexos de Coordenação , Bases de Schiff , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cristalografia por Raios X , Compostos Férricos , Compostos Ferrosos , Guanidinas , Humanos , Ligantes , Oxirredução , Prolina , Bases de Schiff/química , Bases de Schiff/farmacologia
10.
J Inorg Biochem ; 231: 111786, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35287037

RESUMO

Thiosemicarbazones are promising candidates for anticancer therapy and their mechanism of action is often linked to their metal chelating ability. In this study, five (thio)semicarbazones with different donor sets (NNS, NNO, ONS, ONO) were selected and their behaviour in aqueous solution, the stability of their copper(II) complexes in addition to their cytotoxicity, DNA-binding, DNA cleavage ability and inhibition of topoisomerase IIα were investigated and compared. We aimed to reveal relationships between the structural variations, the significantly different physico-chemical properties, solution speciation and biological activity. The cytotoxicity of the ligands did not show correlation with the solubility, lipophilicity and permeability; and the decreased activity of the oxygen donor containing compounds was explained by their stronger preference towards chelation of iron(III) over iron(II). Meanwhile, among the copper complexes the most lipophilic species with the highest stability and membrane permeability exhibited the highest cytotoxicity. The studied copper(II) complexes interact with DNA, and reaction with glutathione led to heavy DNA cleavage in the case of the highly stable complexes which could be reduced in a reversible reaction with moderate rate. All the tested copper complexes inhibited topoisomerase IIα, however, this property of the complexes with low stability is most probably linked to the liberated free copper(II).


Assuntos
Antineoplásicos , Complexos de Coordenação , Semicarbazonas , Antineoplásicos/química , Antineoplásicos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Compostos Férricos , Semicarbazonas/farmacologia
11.
J Biol Inorg Chem ; 27(3): 315-328, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35243522

RESUMO

Solution speciation and serum protein binding of selected In(III) complexes bearing O,O and O,N donor sets were studied to provide comparative data for In(III) and analogous Ga(III) complexes. Aqueous stability of the In(III) complexes of maltol, deferiprone, 8-hydroxyquinoline (HQ) and 8-hydroxyquinoline-5-sulfonate (HQS) was characterized by a combined pH-potentiometric and UV-visible spectrophotometric approach. Formation of mono, bis and tris-ligand complexes was observed. The tris-ligand complexes of HQ (InQ3) and deferiprone (InD3) are present in solution in ca. 90% at 10 µM concentration at pH = 7.4, while the tris-maltolato complex (InM3) displays insufficient stability under these conditions. Binding towards human serum albumin (HSA) and (apo)transferrin ((apo)Tf) of InQ3, InD3 and InM3 complexes and Ga(III) analogue of InQ3 (GaQ3) together with InCl3 was investigated by a panel of methods: steady-state and time-resolved spectrofluorometry, UV-visible spectrophotometry and membrane ultrafiltration. Moderate binding of InQ3 to HSA was found (log K' = 5.0-5.1). InD3 binds to HSA to a much lower extent in comparison to InQ3. ApoTf is able to displace HQ, deferiprone and maltol effectively from their In(III) complexes. Protein binding of non-dissociated InQ3 was also observed at high complex-to-apoTf ratios. Studies conducted with the InQ3/GaQ3 - HSA - Tf ternary systems revealed the more pronounced Tf binding of In(III) via ligand release, while the original GaQ3 scaffold is preferably retained upon protein interactions and significant albumin binding occurs. Significant dissociation of InQ3 was detected in human blood serum as well.


Assuntos
Índio , Soro , Proteínas Sanguíneas , Deferiprona , Humanos , Ligantes , Oxiquinolina/química , Ligação Proteica , Pironas , Albumina Sérica Humana , Transferrina/química
12.
J Med Chem ; 65(3): 2238-2261, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35104137

RESUMO

A series of latonduine and indoloquinoline derivatives HL1-HL8 and their copper(II) complexes (1-8) were synthesized and comprehensively characterized. The structures of five compounds (HL6, [CuCl(L1)(DMF)]·DMF, [CuCl(L2)(CH3OH)], [CuCl(L3)]·0.5H2O, and [CuCl2(H2L5)]Cl·2DMF) were elucidated by single crystal X-ray diffraction. The copper(II) complexes revealed low micro- to sub-micromolar IC50 values with promising selectivity toward human colon adenocarcinoma multidrug-resistant Colo320 cancer cells as compared to the doxorubicin-sensitive Colo205 cell line. The lead compounds HL4 and 4 as well as HL8 and 8 induced apoptosis efficiently in Colo320 cells. In addition, the copper(II) complexes had higher affinity to DNA than their metal-free ligands. HL8 showed selective inhibition for the PIM-1 enzyme, while 8 revealed strong inhibition of five other enzymes, i.e., SGK-1, PKA, CaMK-1, GSK3ß, and MSK1, from a panel of 50 kinases. Furthermore, molecular modeling of the ligands and complexes showed a good fit to the binding pockets of these targets.


Assuntos
Complexos de Coordenação/química , Cobre/química , Compostos Heterocíclicos com 3 Anéis/química , Inibidores de Proteínas Quinases/química , Quinolinas/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sítios de Ligação , Bovinos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Humanos , Indóis/química , Conformação Molecular , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Solubilidade , Relação Estrutura-Atividade
13.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681939

RESUMO

Solution chemical properties of two novel 8-hydroxyquinoline-D-proline and homo-proline hybrids were investigated along with their complex formation with [Rh(η5-C5Me5)(H2O)3]2+ and [Ru(η6-p-cymene)(H2O)3]2+ ions by pH-potentiometry, UV-visible spectrophotometry and 1H NMR spectroscopy. Due to the zwitterionic structure of the ligands, they possess excellent water solubility as well as their complexes. The complexes exhibit high solution stability in a wide pH range; no significant dissociation occurs at physiological pH. The hybrids and their Rh(η5-C5Me5) complexes displayed enhanced cytotoxicity in human colon adenocarcinoma cell lines and exhibited multidrug resistance selectivity. In addition, the Rh(η5-C5Me5) complexes showed increased selectivity to the chemosensitive cancer cells over the normal cells; meanwhile, the Ru(η6-p-cymene) complexes were inactive, most likely due to arene loss. Interaction of the complexes with human serum albumin (HSA) and calf-thymus DNA (ct-DNA) was investigated by capillary electrophoresis, fluorometry and circular dichroism. The complexes are able to bind strongly to HSA and ct-DNA, but DNA cleavage was not observed. Changing the five-membered proline ring to the six-membered homoproline resulted in increased lipophilicity and cytotoxicity of the Rh(η5-C5Me5) complexes while changing the configuration (L vs. D) rather has an impact on HSA or ct-DNA binding.


Assuntos
Aminoácidos/química , Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Complexos de Coordenação/farmacologia , Oxiquinolina/química , Ródio/química , Rutênio/química , Antineoplásicos/química , Apoptose , Proliferação de Células , Neoplasias do Colo/patologia , Complexos de Coordenação/química , Humanos , Células Tumorais Cultivadas
14.
Dalton Trans ; 50(34): 11918-11930, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34374386

RESUMO

There is significant interest today in the interaction of half-sandwich anticancer organometallic complexes with proteins. It is considered as a crucial factor in the transport and mode of action of these compounds; thus it can affect their overall pharmacological and toxicological profiles. Albumin binding of high stability Ru(ii)(η6-p-cymene) and Rh(iii)(η5-C5Me5) complexes formed with 8-hydroxyquinoline, its 5-chloro-7-((proline-1-yl)methyl) substituted derivative, 2,2'-bipyridine and 1,10-phenanthroline is discussed herein. The interaction with human serum albumin in terms of kinetic aspects, binding strength and possible binding sites was studied in detail by means of various methods such as 1H NMR spectroscopy, UV-visible spectrophotometry, steady-state and time-resolved fluorometry, ultrafiltration and capillary zone electrophoresis. Ru(ii)(η6-p-cymene)(2,2'-bipyridine) and Ru(ii)(η6-p-cymene)(1,10-phenanthroline) complexes do not bind to the protein measurably, most probably due to kinetic reasons. However, other complexes bind significantly to albumin with fairly different kinetics to albumin. The binding affinity towards hydrophobic binding pockets shows correlation with lipophilicity along with the actual charge of the respective complexes. The studied complexes preserve their original structure upon interaction with albumin. Formation constants computed for the binding of these metal complexes to histidine-containing model oligopeptides demonstrated significant ternary complex formation, pointing out the importance of histidine coordination in the binding of these types of complexes.

15.
J Inorg Biochem ; 220: 111468, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33951554

RESUMO

The solution chemical properties such as proton dissociation, complex formation with copper(II) and gallium(III) ions in addition to antibacterial and antitumor activity of a novel tridentate salicyaldehyde semicarbazone-estrone hybrid (estrone-SC) and a related bicyclic compound (thn-SC) were investigated. The crystal structure of complex [Cu(thn-SCH-1)Cl] was studied by single crystal X-ray diffraction method. Estrone-SC and thn-SC form mono-ligand complexes with Cu(II) characterized by relatively high stability, however, they are much less stable than their thiosemicarbazone analogues. The neutral Cu(II) complexes with (O-,N,O-)(H2O) coordination mode predominate at physiological pH. Estrone-SC and thn-SC are more efficient Ga(III) binders in comparison with thiosemicarbazones, although the complexes also suffer dissociation at pH 7.4. The Cu(II) complex of estrone-SC displayed significant cytotoxicity in A549, SW480 and CH1/PA cancer cells, and moderate apoptosis induction and ROS formation. The semicarbazone compounds did not exhibit antibacterial effect; unlike the related Cu(II)-thiosemicarbazone complexes represented by the fairly low MIC values (3-50 µM) obtained on the Gram-positive Staphylococcus aureus and Enterococcus faecalis bacteria.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Estrona/análogos & derivados , Estrona/farmacologia , Semicarbazonas/farmacologia , Antibacterianos/síntese química , Antineoplásicos/síntese química , Ácido Ascórbico/química , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Cobre/química , Ensaios de Seleção de Medicamentos Antitumorais , Gálio/química , Glutationa/química , Humanos , Ligantes , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Semicarbazonas/síntese química
16.
Eur J Pharm Sci ; 161: 105779, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33667666

RESUMO

Bis-benzamidines are a diverse group of compounds with high potential in pharmacotherapy, and among them, pentamidine is a drug of great therapeutic significance in Pneumocystis jiroveci pneumonia (PJP) prophylaxis and therapy. Pharmacokinetic properties of these cationic species such as transport, acid/base equilibria, and interactions with potential target molecules are still of interest, especially for recently designed compounds. To broaden our knowledge drug-likeness, human serum albumin binding, and acidity constants (Ka) were experimentally and theoretically examined for five pentamidine analogues 1 - 5 with -NH-CO-chain-CO-NH-bridges of increasing length and O, N, and S atoms in the chain. The studied analogues display very marked activity against Pneumocystis carinii without cytotoxicity that inspired us to perform an in silico analysis of their mode of action based on the hypothesis that the small DNA groove of rich in adenine-thymine pairs is their molecular target. These studies allowed us to classify them as very promising lead molecules.


Assuntos
Pentamidina , Pneumonia por Pneumocystis , Benzamidinas , DNA , Corpo Humano , Humanos
17.
Inorg Chem ; 59(23): 17794-17810, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33222438

RESUMO

Although tyrosine kinase inhibitors (TKIs) have revolutionized cancer therapy in the past two decades, severe drawbacks such as strong adverse effects and drug resistance limit their clinical application. Prodrugs represent a valuable approach to overcoming these disadvantages by administration of an inactive drug with tumor-specific activation. We have recently shown that hypoxic prodrug activation is a promising strategy for a cobalt(III) complex bearing a TKI of the epidermal growth factor receptor (EGFR). The aim of this study was the optimization of the physicochemical properties and enhancement of the stability of this compound class. Therefore, we synthesized a series of novel derivatives to investigate the influence of the electron-donating properties of methyl substituents at the metal-chelating moiety of the EGFR inhibitor and/or the ancillary acetylacetonate (acac) ligand. To understand the effect of the different methylations on the redox properties, the newly synthesized complexes were analyzed by cyclic voltammetry and their behavior was studied in the presence of natural low-molecular weight reducing agents. Furthermore, it was proven that reduction to cobalt(II) resulted in a lower stability of the complexes and subsequent release of the coordinated TKI ligand. Moreover, the stability of the cobalt(III) prodrugs was investigated in blood serum as well as in cell culture by diverse cell and molecular biological methods. These analyses revealed that the complexes bearing the methylated acac ligand are characterized by distinctly enhanced stability. Finally, the cytotoxic activity of all new compounds was tested in cell culture under normoxic and various hypoxic conditions, and their prodrug nature could be correlated convincingly with the stability data. In summary, the performed chemical modifications resulted in new cobalt(III) prodrugs with strongly improved stabilities together with retained hypoxia-activatable properties.


Assuntos
Cobalto/farmacologia , Complexos de Coordenação/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Cobalto/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Estabilidade de Medicamentos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Ligantes , Estrutura Molecular , Pró-Fármacos/síntese química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Células Tumorais Cultivadas
18.
Chemistry ; 26(22): 4997-5009, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32065454

RESUMO

Cancer is one of the main causes of death worldwide. Chemotherapy, despite its severe side effects, is to date one of the leading strategies against cancer. Metal-based drugs present several potential advantages when compared to organic compounds and they have gained trust from the scientific community after the approval on the market of the drug cisplatin. Recently, we reported the ruthenium complex ([Ru(DIP)2 (sq)](PF6 ) (where DIP is 4,7-diphenyl-1,10-phenantroline and sq is semiquinonate) with a remarkable potential as chemotherapeutic agent against cancer, both in vitro and in vivo. In this work, we analyse a structurally similar compound, namely [Ru(DIP)2 (mal)](PF6 ), carrying the flavour-enhancing agent approved by the FDA, maltol (mal). To possess an FDA approved ligand is crucial for a complex, whose mechanism of action might include ligand exchange. Herein, we describe the synthesis and characterisation of [Ru(DIP)2 (mal)](PF6 ), its stability in solutions and under conditions that resemble the physiological ones, and its in-depth biological investigation. Cytotoxicity tests on different cell lines in 2D model and on HeLa MultiCellular Tumour Spheroids (MCTS) demonstrated that our compound has higher activity than cisplatin, inspiring further tests. [Ru(DIP)2 (mal)](PF6 ) was efficiently internalised by HeLa cells through a passive transport mechanism and severely affected the mitochondrial metabolism.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Complexos de Coordenação/farmacologia , Pironas/farmacologia , Rutênio/química , Antineoplásicos/química , Cisplatino/química , Complexos de Coordenação/química , Células HeLa , Humanos , Ligantes , Estrutura Molecular , Pironas/química , Rutênio/farmacologia
19.
J Inorg Biochem ; 202: 110883, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31689626

RESUMO

Solution chemical properties of two bidentate pyrazolyl thiosemicarbazones 2-((3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene)hydrazinecarbothioamide (Me-pyrTSC), 2-((1,3-diphenyl-1H-pyrazol-4-yl)methylene)hydrazinecarbothioamide (Ph-pyrTSC), stability of their Cu(II) and Ru(η6-p-cymene) complexes were characterized in aqueous solution (with 30% DMSO) by the combined use of UV-visible spectrophotometry, 1H NMR spectroscopy and electrospray ionization mass spectrometry in addition to their solid phase isolation. The solid phase structures of Me-pyrTSC∙H2O, [Ru(η6-p-cymene)(Me-pyrTSC)Cl]Cl and [Cu(Ph-pyrTSCH-1)2] were determined by single crystal X-ray diffraction. High stability mononuclear Ru(η6-p-cymene) complexes with (N,S) coordination mode are formed in the acidic pH range, and increasing the pH the predominating dinuclear [(Ru(η6-p-cymene))2(L)2]2+ complex with µ2-bridging sulphur donor atoms is formed (where L- is the deprotonated thiosemicarbazone). [CuL]+ and [CuL2] complexes show much higher stability compared to that of complexes of the reference compound benzaldehyde thiosemicarbazone. [CuL2] complexes predominate at neutral pH. Me-pyrTSC and Ph-pyrTSC exhibited moderate cytotoxicity against human colonic adenocarcinoma cell lines (IC50 = 33-76 µM), while their complexation with Ru(η6-p-cymene) (IC50 = 11-24 µM) and especially Cu(II) (IC50 = 3-6 µM) resulted in higher cytotoxicity. Cu(II) complexes of the tested thiosemicarbazones were also cytotoxic in three breast cancer and in a hepatocellular carcinoma cell line. No reactive oxygen species production was detected and the relatively high catalase activity of SUM159 breast cancer cells was decreased upon addition of the ligands and the complexes. In the latter cell line the tested compounds interfered with the glutathione synthesis as they decreased the concentration of this cellular reductant.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Carcinoma Hepatocelular/tratamento farmacológico , Complexos de Coordenação/química , Neoplasias Hepáticas/tratamento farmacológico , Compostos Organometálicos/química , Apoptose , Neoplasias da Mama/patologia , Carcinoma Hepatocelular/patologia , Proliferação de Células , Cobre/química , Cimenos/química , Feminino , Humanos , Neoplasias Hepáticas/patologia , Pirazóis/química , Rutênio/química , Tiossemicarbazonas/química , Células Tumorais Cultivadas
20.
J Inorg Biochem ; 204: 110963, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31874363

RESUMO

Four Co(III) ternary complexes with the composition of [(Co(4 N))2(quin)](ClO4)4 or [(Co(4 N))2(quinS)](ClO4)3, where 4 N = tris(2-aminoethyl)amine (tren) or tris(2-pyridylmethyl)amine (tpa), quinH2 = quinizarin (1,4-dihydroxy-9,10-anthraquinone), quinSH3 = quinizarin-2-sulfonic acid (1,4-dihydroxy-9,10-anthraquinone-2-sulfonic acid), were synthesized, characterized and their human serum albumin (HSA) binding capabilities were also tested. The complexes can be considered as likely chaperons of quinizarins which are structural models for anthracycline-based anticancer drugs like doxorubicin. All the Co(III) complexes are dinuclear and were isolated as mixture of isomers. Comparison of the cyclic voltammograms of the free ligands and the appropriate Co(III) complexes revealed that the new signals belonging to reversible processes in the range -400-0 mV (vs. Ag/AgCl) for the complexes can be attributed to the reversible reduction of the Co(III) centre. These potentials are in the range of typical (O,O) chelated Co(III) ternary complexes bearing 4 N donor ligands and follow the order being more positive for the tpa containing complexes. Presence of the sulfonate group in the quinizarin results in slightly more negative reduction potential of the Co(III) complexes. HSA binding capabilities of the quinH2 and quinSH3 ligands as well as the appropriate complexes showed that quinSH3 has higher affinity to the protein than quinH2 while none of the complexes seem to bind to HSA.


Assuntos
Antraquinonas/química , Quelantes/química , Cobalto/química , Complexos de Coordenação/química , Albumina Sérica Humana/química , Antraquinonas/síntese química , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA